機械を学ぶ

機械を学ぶ

機械を学ぶとは、以下のことを学ぶことである

機械力学 :機械の動きを学ぶ 材料力学 :機械の強度を学ぶ

熱力学 : 熱エネルギーおよびその変換を学ぶ 流体力学 : 流体エネルギーおよびその変換を学ぶ

材料:機械の原料を学ぶ

工作法:部品の作り方、組み立て方を学ぶ

機械要素 :標準的な機械部品を学ぶ

機構学:動きの変換を学ぶ

設計・製図:製作する機械の作り方を学ぶ

制御:機械の動きのコントロールを学ぶ

電機(メカトロニクス):電気エネルギーおよびその変換を学ぶ

機械とは

機械の定義

「物理的な形状を持ち、複数の部品で構成され、外部からエネルギーをもらって外部に対して仕事をする」

何かのエネルギーを使って仕事をするものが機械

エネルギー源:水車や風車などで使う空気や水の流れ

エンジンなどで使うガソリン・軽油

モータなどで使う電気

仕事:カ×距離・・・ 何らかの動き

形ある動くものが機械

機械を学ぶ

機械力学、材料力学、熱力学、流体力学は4大力学

4大力学で、エネルギーと動きの関係を調べる 機械の学びの中心

4大力学で動きを調べたのち、それをどう実現するか

- どのようなメカニズムを使うか
- どのような形にするか
- そのような材料を使うか
- どのように形を作るか
- ・どのような共通部品を使うか
- どのように動かすか

機械力学

物体に力が働くと運動の状態が変化する(運動の法則)

静止している物体が動き出す 運動している物体の運動の方向が変わる

カと運動の関係および運動とエネルギーの関係を 調べるのが機械力学

自動車の動き(加速・減速、遠心力、摩擦・・・) エンジンの動き、ブレーキの動き、ハンドルの動き 車体の振動

ジェットコースターの動き(速度・加速度、遠心力、 位置エネルギー、運動エネルギー)

熱力学

機械を動かすためにはエネルギーが必要

物質は内部エネルギー (化学エネルギー) を持つ 石油、石炭、天然ガス、木炭・・・

物質が別の物資に変化するときに、内部エネルギーが別のエネルギー(熱エネルギー)に変換される。

例: C + O2 → CO2 + 393kJ/mol

得られた熱エネルギーをさらに運動エネルギーに変換する

熱エネルギーと運動エネルギーの関係を 調べるのが熱力学

材料力学

モノに力をかけ続けると、変形し、破断する

どの程度の力で変形し、破断するか

→ どの程度の力でどのような変形をするか どの程度の力まで耐えられるか、 どの程度の力までなら安全か

力と変形および破断の関係を調べるのが材料力学

ここでのモノは動かない・・・力がつりあった状態

流体力学

液体や気体を流体と言う。

圧縮された流体はエネルギーを持ち、このエネルギーから運動エネルギーを取り出す

動いている流体は運動エネルギーを持ち、このエネルギーで 別の物を動かす

流体が持つエネルギーを調べるのが流体力学

ロケット、飛行機、風車・水車、タービン(発電機)

特に機械技術では、圧縮された油や空気を使って機械を動かす技術が使われる

ワパーショベル、電車の自動ドア、車のブレーキ

材料

機械は様々な部品を組み合わせて作られている

使われる部品は、その用途に応じた材料で作られる 金属、プラスチック、ゴム、セラミックス

材料の性質(特性)として 強度、密度、変形のしやすさ(剛性)、硬さなど

特に金属は、

混ぜ合わせる材料によって性質が変わる:合金 加熱の仕方、冷やし方で性質が変わる:熱処理

各材料の特徴を理解し、最適な材料を選定する

機械要素

機械には様々な部品が使われる 色々な機械で使われる部品は規格化されている

ねじ、歯車、チェーン、回転軸、軸受け(ベアリング)

このような共通化・規格化された部品を機械要素と言う

機械要素を使うことにより、コストダウン、時間短縮、性能 向上を図ることができる

機械要素の種類および用途を理解する

工作法

機械部品は様々な形がある その形を作る方法として、様々な種類がある

溶かして型に流し込む(鋳造) 力をかけて変形させる(塑性加工) 切る、削る(切削加工、研削加工) 二つの部品を部分的に溶かして接続する(溶接、接合)

それぞれの作り方の特徴がある 製作時間、歩留まり、精度、コスト

各作成方法を理解し、最適な作成方法を選定する

機構学

機械の動きは、直線運動と回転運動の組合せたものである

直線運動および回転運動を別の運動に変換するものをメカニズム(機構)という

回転→直線、直線→回転、回転→揺動 小さいカ→大きいカ、可動範囲小→大、

クランクースライダ機構、リンク機構、カム機構、

メカニズムによる運動の変化を理解する

設計•製図

機械は複数の部品で構成され、エネルギーを仕事に変換する

エネルギーを仕事に変換するのを調べるのが4大力学 形ある部品を考えるのが材料と工作法 部品の中で、共通で使われる部品を選定するのが機械要素 部品を組み合わせて動きを変換させるのがメカニズム

機械製作を考える方法を理解する

考えた機械装置・機械部品を図示する方法を理解する

機械製図は、世界共通ルールに従って書く必要がある

効率よく設計・製図を行うためにコンピュータが使われる CAD/CAM/CAE

制御

機械を希望通りに動かすためには何らかの操作が必要になる

希望通りに動かすことを制御(コントロール)という

人による制御を手動制御 人を使わない制御を自動制御

自動制御を行うためには、

機械の状態を検出し、どのように動かすかを決定し、 機械を操作することが必要

検出機器、制御機器、操作機器を組み合わせたものを制御装置、制御されるものを含めたもの制御システムという

各機器の動作特性、システムの制御特性を理解する

雷機

機械を動かすためのエネルギーとして電気が使われる 機械を希望通りに動かすため信号として電気が使われる

電気を使った機械を電機という 三菱電機、富士電機・・・

エネルギーとして 交流100V、交流200V、直流12V、直流24Vなど 信号として

電圧の高/低(H/L)、電流の通電/遮断(ON/OFF)

機械を希望通りに動かすためにコンピュータが使われる

電気を使って機械を動かす方法を理解する

機械を学ぶことによって

これらのことを学ぶことによって

形ある部品をつくることができる 工作法、材料、材料力学、設計・製図

部品を組み合わせた動く機械を作ることができる 工作法、機械要素、機構学、機械力学、熱力学、流体力学、制御、 電機(メカトロニクス)、設計・製図

機械を学ぶことによって

就ける職業(職種)として

形ある部品の設計

パソコン部品、スマホ筐体、バイク部品、家具 などの部品設計

動く機械の設計

自動車、電車、エレベータ、工場生産ライン などの機械設計

部品・機械装置の製造

工作機械の操作、溶接、組立・調整 など

機械の保守・保全

部品交換などでの分解・組立、稼働状況の管理 など

作る製品の管理

品質の管理、進捗状況の管理 など

機械の販売

機械装置の営業、機械部品の営業、学校教材の営業など

日本の製造業に対して

日本を豊かにするのはモノづくりではあるが・・・

50年前のものづくりと現在のものづくりは違う

50年前のものづくり

良いもの、安いものを大量生産する 例えば、ラジオ、自動車などの民生品

現在のものづくり

良いもの、安いものを大量生産するのは中国などで 日本は、より良い高価なものを少量生産 例えば、新製品、開発品、製造装置、原材料などのBtoB

これからの日本の製造業には、アジアやアフリカで作れない ものを作ることが求められる

機械を学ぶことによって

作るものとして

パソコン、自動車、電車、エレベータ、鉄骨、食品、医薬品・・・ などの商品

自動組立装置、自動検査装置、自動生産ライン、金型・・・ などの生産設備

就職職種として

商品の 開発・設計、製造、保守・修理、生産管理、営業 生産設備の 開発・設計、組立・調整、保守・保全

就職業種として

ものをつくるほとんどの企業(業種は問わない) 自動車、家電、情報機器、食品、医薬品、 機械部品、自動車部品、電子部品、機械装置、建設物、生産工場