1. 機械材料

はじめに

機械にはさまざまな材質の部品などが使われている。

例: 机(金属、木)、ボールペン(樹脂、金属、ゴム) 自動車(鉄板、金属、ガラス、樹脂・・・)

材質(材料)を選定する基準は

①機械的特性 :強度、重量、耐食性・・・

②製造コスト : 材料の単価、製造方法・・・

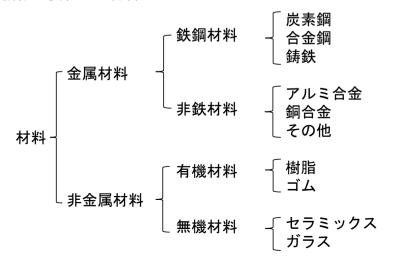
これらのことを考慮し、最適な材料を選定する。

機械材料

- 1. 1 材料試験
- 1. 2 金属材料

熱処理

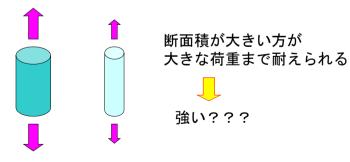
鉄鋼材料(一般鋼、特殊鋼、鋳鉄・・・)


非鉄材料(アルミ合金、銅合金・・・)

1.3 非金属材料

プラスチック、ゴム、セラミックス・・・

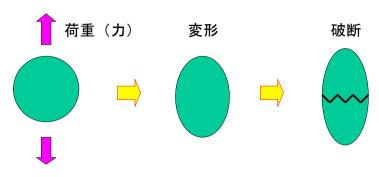
機械で使われる材料として



1. 1 材料試験

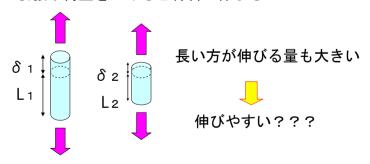
- 1) 引張試験
- 2) 硬さ試験 ビッカース硬さ ロックウエル硬さ ブリネル硬さ ショア硬さ
- 3) 衝撃試験 シャルピー衝撃試験
- 4)疲労試験 曲げ疲労試験 ねじり疲労試験

応力


材料に引張り荷重をかけたとき

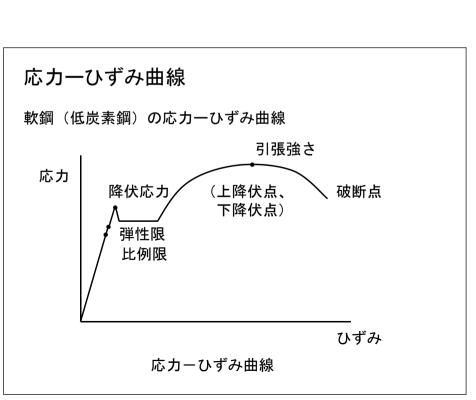
荷重を断面で割ったもので評価・・・応力

1) 引張り試験


材料に荷重(力)をかけると変形し、破断に至る

荷重と変形の度合いを調べるため、 材料に引張り荷重をかけ、破断するまでの挙動を調べる

ひずみ

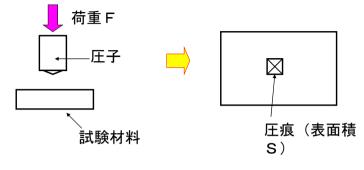

材料に引張り荷重をかけると材料が伸びる

伸びを元の長さで割ったもので評価・・・ひずみ

$$\varepsilon = \frac{\delta}{L}$$
 ε :ひずみ 、L:長さ 、 δ :伸び ひずみの単位は無い(無次元数)

応力一ひずみ曲線 材料に引張荷重をかけたときの応力とひずみの関係 引張強さ 応力 弾性限 ・ 破断点 比例限 比例限 比例域では応力とひずみが比例 σ=Εε Ε: 縦弾性係数 弾性変形 塑性変形 応力ーひずみ曲線

応力一ひずみ曲線による材料の分類 引張り試験で材料の特性を知ることができる 変形しづらい材料(脆性材料) (塑性変形ほとんどなし。もろい)) 変形しやすい材料(延性材料) (塑性変形が大きい。ねばい) ひずみ 応力-ひずみ曲線

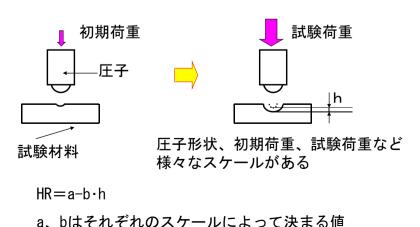

2)硬さ試験

硬さ試験の原理として

- ・変形のしやすさで評価 ビッカース硬さ、ロックウエル硬さ、ブリネル硬さ 金属などの硬さ試験
- ・跳ね返りやすさでで評価 ショア硬さ ゴムなどの硬さ試験
- ・傷つきやすさで評価 モースの硬度計 鉱物などの硬さ試験

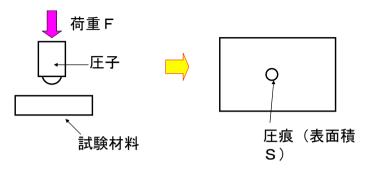
ビッカース硬さ(HV)

四角推のダイヤモンド圧子(あっし)を押し込み、残った くぼみの跡の表面積で評価



HV=F/S 単位 kgf/mm²

試験荷重は概ね1~50kgf


ロックウエル硬さ(HR)

球など圧子を最初に小さい荷重で押し込み、その後大きな荷 重で押し込んだときのくぼみの深さの差で評価

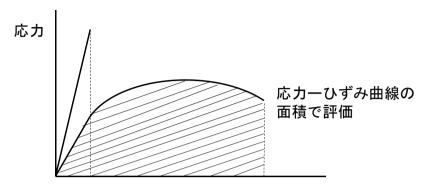
ブリネル硬さ(HB)

球の圧子(鉄(HB)、鋼(HBS)、超硬合金)を押し込み、残ったくぼみの跡の表面積で評価

HB=F/S 単位 kgf/mm²

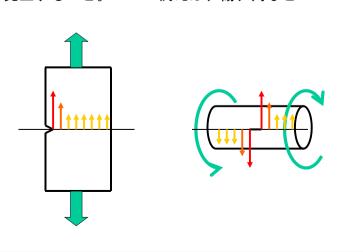
球の直径は5もしくは10mm

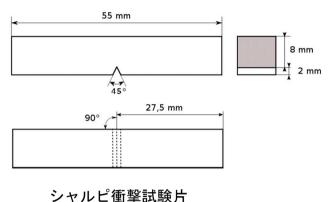
ショア硬さ


球状のダイヤモンドを埋め込んだ鋼製ハンマーを一定の高さから試験材料に落下させ、跳ね上がった高さで評価する

圧痕が残らないゴムの硬さの評価などに使われる

3)衝擊試験


急激に大きな力を加えたときに、どの程度のエネルギーで破断するのかを評価する。


代表的なものとしてシャルピ衝撃試験がある。

応力集中

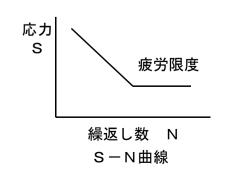
応力集中とは、形状が変化することによりその近くで大きな 応力が発生すること。 例えば、傷、角など

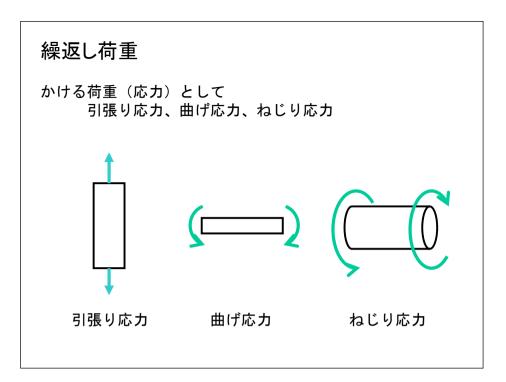
シャルピー衝撃試験片

ンヤルし国筆武級力

試験片にはV字の切り欠きがある・・・・応力集中

4)疲労試験


本来、破断しない荷重(応力)であっても、その荷重が繰返し作用することにより、破断する。



疲労破壊 機械部品の破壊の多くはこれが原因

疲労試験は、

試験片に繰返し荷重をかけ、 破断に至るまでの繰返し数を 数える。

1.2 金属材料

- 1)熱処理
- 2) 鉄鋼材料 一般鋼(炭素鋼) 特殊鋼(合金鋼) 鋳鉄
- 3) 非鉄材料 アルミ合金 銅合金 その他金属

材料試験まとめ

引張試験

応力(Pa=N/m2)、ひずみ、応カーひずみ曲線、 弾性、塑性、比例限、耐力、降伏応力、引張強さ、 縦弾性係数、脆性、延性

硬さ試験

ビッカース硬さ、ロックウエル硬さ、ブリネル硬さ、 ショア硬さ

衝擊試験

シャルピー衝撃試験機、応力集中

疲労試験

繰返し荷重、疲労破壊、S/N曲線、疲労限度

機械材料

機械部品の材質として様々な材料が使われている。 その代表的なものとして

> 非鉄鋼材料・・・アルミおよびアルミ合金 銅および銅合金 その他(チタンなど)

、非金属・・・樹脂(プラスチック)、ゴム セラミックス 複合材料

1)材料の熱処理

材料を加熱し冷却すると、その条件により性質が変化する

鉄鋼材料の熱処理

「焼きならし 加熱後、空気中でじわじわ冷やす。

焼きなまし 加熱炉で加熱後、ゆっくり冷やす。500~800度

焼き入れ 加熱炉で加熱後、水や油に入れて急激に冷やす。

→ 硬くなる(もろくなる)。 800~1100度

焼き入れ後に再加熱し、靭性を高める。 焼き戻し

> 450度以上、高温焼き戻し。 350度以下、低温焼き戻し。

製鉄

製鉄とは、鉄鉱石から鋼を作り出すこと

製銑工程

鉄鉱石とコークス・・・高炉(溶鉱炉)で溶かす

- → 銑鉄(鉄と多量の炭素(4~5%)と不純物) 銑鉄は硬くてもろい。ほとんど使えない。
- *コークスは、石炭から硫黄などの不純物を取り除いたもの

製鋼工程

銑鉄と酸素・・・転炉(電気炉)で溶かす → 鋼、合金鋼、純鉄

圧延工程

鋼から鋼板、型鋼、棒鋼、鋼管などを作る

2)鉄鋼材料

金属材料の中でもっとも使われている

一般的に「鉄」と呼ばれているが、純鉄はほとんど使われな い。炭素鋼や合金鋼が広く使われる。

鋼(鋼鉄):鉄+炭素+その他の金属 の合金

原料は鉄鉱石

鉄鉱石から鉄を取り出し、その他の 物質を加えて鉄鋼材料を作り出す。

炭素綱(綱、綱鉄)

鉄合金として、鉄と炭素の合金(鋼)が広く使われている。 炭素の量によって性質が大きく異なる。

炭素の濃度が高くなるにつれて

純鉄→低炭素鋼→中炭素鋼→高炭素鋼→鋳鉄

高い(約1500度)

低い(約1200度)

硬い(もろい)

硬さ 軟らかい 強度 弱い

強い

可能←|→不可能 不可能←│→可能

溶接

焼入れ

融点

一般構造用炭素鋼

炭素量を規程せず、引張り強さだけで種別 (一般的には低炭素鋼)

SS*** ***は引張り強さ***MPa

SS400 (引張り強さ 400MPa)

加工性、溶接性が良好。単に強度だけで選定し、成分に特に規定はな

Ĺ١,

用途:一般機械部品、鉄骨、ボルト、ナット、ピンなど

冷間圧延鋼

厚さの精度が良好。表面がきれいで、切断、曲げ、絞り加工 性良好。

SPCC: 一般用、 SPCD: 絞り用、 SPCE: 深絞り用 SECC: SPCCに電気亜鉛めっきを施したもの(耐食性良)

用途:鋼製家具、弱電、自動車などのカバー、ケースなど

機械構造用炭素鋼

鉄に炭素を含む鋼で、炭素量によって種別。 炭素量の違いで性質が異なり、用途も異なる。

JISでは炭素量によってS100~S580まで23種に分類。

S**C (炭素量0.**%)

低炭素鋼では、加工性、溶接性が良好。 中炭素鋼では、熱処理(焼入れ)をして用いることが多い。

S45C(丸棒)、S50C(板材)

一般的な機械部品用鉄鋼材料。

用途:ボルト、ピン、座金、クランク軸、クラッチ、

チェーン、傘など

工具鋼 · 合金工具鋼

炭素工具鋼 炭素量0.6~1.5%含む高炭素鋼。 焼入れ硬度が高いのでおもに工具用で使用。 SK* *は炭素量 SK65、75、85、95、105、120、140など

合金工具鋼 炭素工具鋼に合金元素を添加 焼入れによる耐変形量、耐磨耗性、耐衝撃性、 耐熱性を向上

SKS*、SKD* *は種別

高速度工具鋼 炭素工具鋼に合金元素を比較的多量に添加 耐摩耗性と高靭性を向上

SKH* *は種別 SKH51、SKH55など

合金鋼

性質や特性を変えるために、炭素鋼に合金元素を加える。

マンガン Mn : 粘さを損なわず、強さと硬さを増す。

クロム Cr : 磨耗に強くなる。錆びにくくなる。

モリブデン Mo: 粘さ、高温下での強さ・硬さが増す。

ニッケル Ni : 粘さと強さが増し、熱にも強くなる。

Crと併用で錆びにくくなる。

バナジウム V:強さと硬さを増し、磨耗しにくくなる。

タングステン W:Mo同様の作用がある。

など

機械構造用合金鋼

炭素鋼に種々の合金元素を適量添加して、機械的特性を向上 させた合金鋼。

クロム鋼 SCR***

クロムモリブデン鋼 SCM*** (よく使われる)

ニッケルクロム鋼 SNC***

ニッケルクロムモリブデン鋼 SNCM***

マンガン鋼 SMn***

マンガンクロム鋼 SMnC***

焼入れ性、溶接性、耐磨耗性、粘り強さなどが改善 用途:歯車、ピン、軸、アーム、歯車、冷間鍛造部品、ボルトなど

合金鋼の種類

機械構造用合金鋼: 機械的特性を向上

ステンレス鋼 : 耐食性を向上

高張力鋼 : 引張強さを向上

合金工具鋼: 耐磨耗性、耐衝撃性、耐熱性を向上

高速度工具鋼 : 耐摩耗性と高靭性を向上

耐熱鋼 : 高温状態での機械的特性を向上

軸受鋼 : 耐摩耗性、耐衝撃性、焼入れ性を向上

ステンレス鋼

クロムを10.5%以上含む特殊鋼。表面に透明の酸化皮膜ができるため、さびにくい(さびない)。ニッケルを加えたものもある。

SUS*** ***は種別

マルテンサイト系 代表例 クロム13%

フェライト系 代表例 クロム18%

オーステナイト系 代表例 クロム18%ーニッケル8%

マルテンサイト系ステンレス鋼

クロム13%の13クロムステンレス鋼が代表的。 焼入れ可能。磁性有り。

機械加工性が良好。焼入れが可能なので刃物で使われる。耐食性はやや良いが、ほかのステンレスよりは劣る。

SUS410、SUS420 (13クロム) 用途:一般機械部品、刃物類

SUS440 (17%Cr)

硬度が高く、炭素量が多いものは焼き入れが可能

用途:ベアリング

オーステナイト系ステンレス鋼

クロム18%、ニッケル8%の18-8ステンレス鋼が代表的。 焼入れ不可能。磁性なし。

延性、靭性に富み、深絞り、曲げ加工などの加工性が良好。 溶接性、耐食性も優れ、低温、高温における性質も優秀。 切削加工はやや困難。

製造量は全ステンレス生産量の60%以上。用途は広範囲

SUS304

一般的な18-8ステンレス。耐食性、溶接性に優れている。錆びにくい。

用途:機械部品、半導体装置、化学工業設備、建築材料、 シャフト、家庭用品など

フェライト系ステンレス鋼

クロム18%の18クロムステンレス鋼が代表的。 焼入れ不可能。磁性有り。

成形加工性および耐食性が優れており、溶接性も比較的良好で安価であるため、一般耐食用として広く用いられる。

SUS430 (18クロム)

用途:一般家庭用器具、建築内装材料、厨房器具など

オーステナイト系ステンレス鋼

SUS303

SUS304に成分添加より切削性向上。耐食性はSUS304より劣る。

用途:自動車部品、シャフト、ボルト、ナット、冶工具、 切削部品など

SUS316

SUS304に耐食性のよいMoを添加したもの。海水をはじめ各種媒質に優れた耐食性がある。ニッケルの量が多い(概ね10%)

用途: 化学薬品用、各種化学工業、船舶電気関係、 食品工業、原子力発電など

高張力鋼材(ハイテン)

マンガンやシリコン等の元素を添加し、一般構造用鋼材よりも強度を向上させた鋼材(引張り強さ 500MPa以上)。

SM*** 引張り強さ***MPa以上

軽量化が可能。

用途:橋梁、ガスタンク、石油タンク、自動車のボディ

他にも、各メーカー独自に高張力鋼を開発している。 (詳細は企業秘密のため、規格化されていない)

鋳鉄

炭素を2.14~6.67%含む鉄の合金。炭素を含むことで融点が下がるため、鋳鉄は鋳造加工に用いられる。

炭素の他にケイ素、マンガン、リン、 硫黄が含まれており、これらの添加 成分の比率によって特性が変わる。

その他の合金鋼

軸受鋼 SUJ***

軸受(ベアリング)に使用される鋼材。耐摩耗性、耐衝撃性、切削性、 焼入れ性に優れる。高炭素クロム鋼系が需要の大半を占める。

用途:軸受、ローラ、ゲージ、ガイドレールなど

ばね鋼 SUP***

引張強さが高く、じん性にすぐれている。特に疲労強さが大きい。 用途:板ばね、コイルばね、トーションバーなど

耐熱鋼 SUH* (SUH1、SUH3、SUH5・・・)

ステンレスより多い量のNi、Cr合金で、耐熱性、耐圧、耐酸化、耐食、耐変形、強靭性、加工性を備えた合金鋼。

用途:タービン、自動車用エンジン部品、化学プラント

快削鋼 SUM***

鉛、硫黄などを少量含み、切削性を向上させた合金鋼。 近年、鉛フリー快削鋼が開発され、適用が広がっている

鋳鉄の機械的性質

- ①炭素鋼と比べ硬くてもろい
- ②C. Siの含有量が低いほど、引張強さは大きく硬い
- ③黒鉛が減摩剤として作用するので、耐摩耗性に優れる
- ④伸び・衝撃値は小さい
- ⑤振動の減衰性に優れ、工作機械の本体に使われる

鋳鉄の種類

ねずみ鋳鉄 FC*** (FC200など 数値は引張強さ)

含有炭素の大部分が片状黒鉛として有する鋳鉄。鋳造性、切削性、耐 磨耗性。振動吸収性性(減衰性)、耐食性など機械的特性に優れる。

安価で一般機械用材料に使用されている。

用途: 鋳物、工作機械ベット、ピストンリング、歯車など

球状黒鉛鋳鉄 FCD*** (FCD400など 数値は引張強さ)

含有炭素の大部分が球状黒鉛として有する鋳鉄。組織配列が均一に なっているため、強度が高く、衝撃に強い。めっきもがかかりやすい。 用途: 鋳物、自動車部品、軸受など

アルミニウム、アルミ合金

ボーキサイトを電気分解してアルミナ(Al2O3) つくり、それ をさらに電気炉で精錬してアルミニウムを作る。

その特徴として

鋼材より軽い (鋼材の約1/3)

融点が低い(約660度)

熱伝導性が良い

雷気伝導性が良い

加工しやすい

アルミの分類として

展伸用 A****

鋳造用(鋳物用AC**、ダイカスト用ADC**)

2)非鉄材料

鉄鋼材料以外の金属として アルミニウム、アルミ合金、銅、銅合金 などがある

展伸用アルミニウム、アルミ合金の種類

切削加工、曲げ加工、深絞り加工、押出し成型などに用いる。

A1*** 純アルミ 装飾品、反射板、印刷版、フィン

A2*** Al-Cu系 機械部品、航空機用、宇宙機器

A3*** Al-Mn系 各種容器、飲料缶(深絞り)、屋根材

A4*** Al-Si系 建築パネル

車両部品、機械部品、缶エンド A5*** Al-Mg系

A6*** AI-Mg-Si系 サッシ、車両部品

A7*** AI-Zn-Mg系 航空機用、車両部品、スポーツ用品

主な展伸用アルミ合金

A1050 通常の純アルミ。軟らかく、切削加工が困難 用途:家庭用品、電気機器、装飾品、熱交換器、導電材

A5052、A5056 耐食性も良く、ある程度の強度がある 用途:一般機械材料、一般板金、軽量切削部品

A2017 硬くて強度が高い(SS400程度)。耐食性は良くない。 ジェラルミンと呼ばれる。

用途:航空機・自動車・二輪車部品、現金輸送ケース

A6063 押出性に優れ、耐食性、表面処理も良好。 用途:アルミサッシ、ガードレール、車両、電化製品

A7075 アルミ合金の中で最強の強度を持つ。耐食性は劣る。 超々ジュラルミンと呼ばれる。

用途:航空機材、機械部品、スポーツ用品

主な展伸用アルミ合金

A1050 通常の純アルミ。軟らかく、切削加工が困難 用途:家庭用品、電気機器、装飾品、熱交換器、導電材

A5052、A5056 耐食性も良く、ある程度の強度がある 用途:一般機械材料、一般板金、軽量切削部品

A2017 硬くて強度が高い (SS400程度) 。耐食性は良くない。 ジェラルミンと呼ばれる。

用途:航空機・自動車・二輪車部品、現金輸送ケース

A6063 押出性に優れ、耐食性、表面処理も良好。 用途:アルミサッシ、ガードレール、車両、電化製品

A7075 アルミ合金の中で最強の強度を持つ。耐食性は劣る。 超々ジュラルミンと呼ばれる。

用途:航空機材、機械部品、スポーツ用品

主な展伸用アルミ合金

A1050, A1070

通常の純アルミ。軟らかく、切削加工が困難 A1050は純度99.5%、A1070は純度99.7%。 用途:家庭用品、電気機器、装飾品、熱交換器、導電材

A5052, A5056

耐食性も良く、ある程度の強度がある

用途:一般機械材料、一般板金、軽量切削部品

A2017, A2024

硬くて強度が高い(SS400程度)。耐食性は良くない。 A2017はジェラルミン、A2024は超ジュラルと呼ばれる。 用途:航空機・自動車・二輪車部品、現金輸送ケース

A6063, A6061

押出性に優れ、耐食性、表面処理も良好。

用途:アルミサッシ、ガードレール、車両、電化製品

A7075

主な鋳造用アルミ合金

材料を溶融し、型に流し込んで製造する。型に流し込むのを 鋳造、金型に圧力をかけて押し込むををダイカスト。

エンジン・ブロックのような大型のものは鋳造 小型なものはダイカスト品

AC2A Al-Cu-Si系 鋳造性がよく、引張強さは高いが、伸びが少ない。一般用として優れている。

用途:マニホールド、デフキャリア、ポンプボデー、 シリンダヘッド、自動車用足回り部品など

ADC12 Al-Si-Cu系 ダイカスト向け。引張り強さ300MPa。

鋳造性、機械的性質が良好。

用途: ギヤケース、自動車部品、カメラボディー

銅、銅合金

銅及び銅合金は、電気伝導率、および熱伝導率が良好で、耐 食性も一般に優れている。

融合性に富んでおり亜鉛、錫、ニッケルなどと容易に融合し、いろいろな合金をつくる。

Cu-Zn系···黄銅、 Cu-Sn系···青銅、 Cu-Ni系···白銅

黄銅は殺菌作用があるため、ドアハンドルや引手などに使われる。

銅・銅合金の種類

C1020 無酸素銅 純度99.96%以上

電気・熱の伝導性、ろう付け性・深絞り性に優れ、溶接性・耐食性・耐候性が良い。酸素がなく劣化しない。

用途:電気用、化学工業用

C1100 タフピッチ銅 純度99.90%以上。酸化銅を含む 電気・熱伝導性に優れ、展延性・絞り加工性・耐食性・ 耐候性が良い。

用途:電線、電気用接点

C2600 七三黄銅 Zn30%の銅合金

C2800、C2801 六四黄銅 Zn40%の銅合金。

黄金色に近い黄色を示す。強度が強く展延性がある。 用途:摺動部品、配線器具、時計部品、電球口金

銅、銅合金の種類

切削加工、曲げ加工、深絞り加工、押出し成型などに用いる。

C1*** 純銅 装飾品、反射板、印刷版、フィン

C2*** Cu-Zn系 丹銅、黄銅

C3*** Cu-Zn-Pb系 各種容器、飲料缶(深絞り)、屋根材

C4*** Cu-Zn-Sn系 建築パネル

C5*** Cu-Sn系 車両部品、機械部品、缶エンド

C6*** Cu-Fe-Zn-AI-Mn系 サッシ、車両部品

C7*** Cu-Ni系 航空機用、車両部品、スポーツ用品

銅・銅合金の種類

C4621、C4622 ネーバル黄銅 黄銅に約1%の錫を加えたもの。

強度と耐海水性に優れている

用途:船舶用部品

C5191 りん青銅 3.5~9%の錫と0.03~0.3%のりんを加えたもの

強度、じん性、耐摩耗性、耐食性に優れている

用途:機械部品、摺動部品

C5120 ばね用りん青銅

りん青銅のじん性をさらに高めたもの

用途:板ばね、スイッチ部品

C6161、C6191 アルミ青銅 AI10%の銅合金 強度が高く、耐食性、特に耐海水性、耐磨耗性がよい。

用途:機械部品、化学工業用、船舶用

銅・銅合金の種類

C7060 白銅 Ni10%の銅合金。 耐食性、特に耐海水性がよく、比較的高温の使用に適する。 熱交換器用管板、溶接管など

熱可塑性プラスチック(汎用)

ポリエチレン(PE)

水より軽く、電気絶縁性、耐水性、耐薬品性、環境適性に優れる。 耐熱性は乏しい。機械的に強靭だが柔らかい。 包装材(袋、ラップ、食品チューブ、食品容器)、農業用フィルム、 電線被覆、シャンプー・リンス容器、バケツ、灯油缶、コンテナ

ポリプロピレン(PP)

軽い。耐熱性が比較的高い。機械的強度に優れる。 自動車部品、家電部品、食品容器、キャップ、トレイ コンテナ、衣装函、日用品、ごみ容器

ポリスチレン(PS)

着色が容易。電気絶縁性がよい。 OA・TVのハウジング、CDケース、 梱包緩衝材、魚箱、食品用トレイ、カップ麺容器

3) 樹脂材料

熱可塑性プラスチック (熱を加えると軟化する)

プラスチック〈

○ 汎用□ エンジニアリングプラスチックスーパーエンジニアリングプラスチック

熱硬化性プラスチック (熱を加えても軟化しない)

ゴム 天然ゴム ゴムの木の樹液から作られる

化成ゴム 化学的に作られる

熱可塑性プラスチック(汎用)

塩化ビニル樹脂(PVC)

燃えにくく、表面の艶・光沢が優れ、印刷適性が良い。水に沈む。 上・下水道管、継手、雨樋、波板、サッシ、床材、壁紙、 ビニルレザー、ホース、農業用フィルム、ラップフィルム、電線被覆

アクリロニトリル/スチレン樹脂 (AS)

透明性、耐熱性に優れている。

食卓用品、食品保存容器、玩具、化粧品容器、使い捨てライター、 電気製品(扇風機のはね、ジューサー)

ABS樹脂

光沢、外観、耐衝撃性に優れている。

OA機器、自動車部品(内外装品)、ゲーム機、建築部材(室内用)、 電気製品(エアコン、冷蔵庫)

熱可塑性プラスチック(汎用)

ポリメチルメタクリレート (PMMA) 別名、アクリル 無色透明で光沢がある。ベンジン、シンナーに侵される。 自動車リアランプレンズ、照明板、水槽プレート、コンタクトレンズ

ポリエチレンテレフタレート (PET)

強靭で透明性、耐油性、耐薬品性ガスバリア性に優れている。 惣菜・果物などの容器、飲料カップ、クリアホルダー、ペットボトル

熱可塑性プラスチック(スーパーエンプラ)

フッ素樹脂 (ポリ四フッ化エチレン、テフロン)、 乳白色で耐熱性、耐薬品性が高く非粘着性を有する。 フライパン内面コーティング、絶縁材料、電線被覆、半導体工業分野

ポリエーテルエーテルケトン (PEEK)

連続使用温度は250°Cで、耐薬品性、耐摩擦摩耗性等に優れる。 製造ライン用部品、半導体・液晶製造装置部品 、原子力関連部品 電子部品、各種精密機器部品

熱可塑性プラスチック(エンプラ)

ポリアセタール (POM) 商品名でデルリン、ジュラコン 白色、不透明で、耐衝撃性に優れ耐摩耗性が良い。 各種歯車、自動車部品、各種ファスナー・クリップ

ポリアミド(PA) 商品名でナイロン

乳白色で、耐摩耗性、耐寒冷性、耐衝撃性が良い。 自動車部品、食品フィルム、魚網・テグス、各種歯車、ファスナー

ポリカーボネイト (PC)

無色透明で、酸には強いが、アルカリに弱い。特に耐衝撃性に優れ、耐熱性も優れている。

DVD・CDディスク、ヘッドランプレンズ、カメラレンズ、透明屋根材

熱硬化性樹脂

フェノール樹脂 (PF) 別名:ベークライト 電気絶縁性、耐酸性、耐熱性、耐水性が良い。燃えにくい。 プリント配線基板、配電盤ブレーカー、鍋・やかんのとって・つまみ、

メラミン樹脂 (MF)

耐水性が良い。陶器に似ている。表面は硬い。 食卓用品、化粧板、合板接着剤、塗料つまみ、合板接着剤

ユリア樹脂 (UF) 別名:尿素樹脂 メラミン樹脂に似ているが、安価で燃えにくい。 ボタン、キャップ、電気製品(配線器具)、合板接着剤

ポリウレタン (PUR)

柔軟〜剛直まで広い物性の樹脂が得られる。接着性・耐摩耗性に優れ、 発泡体としても多様な物性を示す。

発泡体: クッション、自動車シート、断熱材 非発泡体: 工業用ロール・パッキン・ベルト、塗料

熱硬化性樹脂

シリコン樹脂(SI)

優れた耐熱性や絶縁性に加えて、低毒性であるため、広範囲な分野で使 用される

耐寒性にも優れ-100℃~250℃という幅広い範囲で熱安定性を示す、

エポキシ樹脂(EP)

接着剤や塗料としての用途で優れた特性を発揮する 高い電気絶縁性はプリント基板や電子部品の塗料として最適

一般用ゴム

天然ゴム (NR)

もっともゴムらしい弾性をもち、耐摩耗性などの機械的性質がよい。 大型自動車タイヤ、産業用トラクタータイヤ、履物、ホース、 ベルト、空気バネ、など一般用および工業用品

イソプレンゴム(合成天然ゴム)(IR) 天然ゴムとほとんど同じ性質をもち、安定している。 自動車・航空機用タイヤ、天然ゴムの代用

ブタジエンゴム ゴム(BR)

天然ゴムより弾性がよく、耐摩耗性も優れている。 自動車・航空機用タイヤ、履物、防振ゴム、ベルト、ホース

樹脂のリサイクルマーク

ペット ペットボトル、ビデオのテープ、 たまごのパックなど

高密度ポリエチレン しジ袋、バケツ、灯油缶、 剛輝區 弁当箱など

塩化ビニール樹脂 塩化ヒーール pg yill ラップ、パイプ、ホース、 農業用ビニールなど

低密度ポリエチレン ラップフィルム、農業用シー ト、ポリ袋、マヨネーズのチ ューブ、牛乳パックの内側コ ーティングなど

ポリプロピレン 食品容器、浴用品、収納容器、 フィルムなど

ポリスチレン CDケース、食品包装材料 (容器・トレー・カップ)、 漁箱、植木鉢、おもちゃなど

その他の石油製品

特殊ゴム

クロロプレン ゴム (CR)

耐候性、耐オゾン性、耐熟性、耐薬品性など平均した性質をもつ。 電線被履、コンベアベルト、防振ゴム、窓わくゴム、一般工業用品

ニトリル ゴム (NBR)

耐油性、耐摩耗性、 耐老化性がよい。 オイルシール、ガスケット、耐油ホース、コンベアベルト、耐油製品

ブチル ゴム (IIR)

耐候性、耐オゾン性、耐ガス透過性がよく、極性溶剤に耐える。 自動車タイヤのインナーチューブ、キュアリングバッグ、ルーフィン グ電線被覆、窓わくゴム、スチールホース、耐熱コンベアベルトなど。

シリコンゴム (Q)

高度の耐熟性と耐寒性をもっている。耐油性もよい。 パッキン、ガスケッ ト、オイルシール、工業用ロール、電気絶縁用 医療用

特殊ゴム

フッ素ゴム (FKM, FEPM, FFKM)

最高の耐熱性と耐薬品性をもっている。

ミサイル・ロケットなどのパッキン、化学工場の耐食パッキン、 ガスケット、ダイヤフラム、タングライニング、ホース、